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Abstract
A Darboux transformation for the relativistic Toda lattice hierarchy is
constructed. As an application, an exact solution of the relativistic Toda lattice
equation is presented.
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1. Introduction

The aim of this paper is to establish a Darboux transformation for the relativistic Toda lattice
(RTL) equation

q̈n = (1 + hq̇n−1)(1 + hq̇n)
exp(qn−1 − qn)

1 + h2 exp(qn−1 − qn)

− (1 + hq̇n)(1 + hq̇n+1)
exp(qn − qn+1)

1 + h2 exp(qn − qn+1)
, (1)

where h = 1
c
, c is the speed of light, qn = q(n) is the coordinate of the nth lattice point,

and q̇n means the differentiation of qn with respect to time t. The RTL equation was first
introduced by Ruijsenaars [1] and has been studied by many authors. Bruschi and Ragnisco
constructed its Lax representation, recursion operator and Bäcklund transformation [2–4].
Oevel, Fuchssteiner, Zhang and Ragnisco presented its master symmetry and bi-Hamiltonian
structure [5]. Suris found its relation to the discrete time Toda lattice [6, 7]. Ohta, Kajiwara,
Matusukidara and Satsuma obtained its Casorati determinant solution [8].

The RTL equation (1) can be written as{
ṗn = exp(qn−1 − qn + hpn−1) − exp(qn − qn+1 + hpn),

1 + hq̇n = exp(hpn)(1 + h2 exp(qn − qn+1)).
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Furthermore, in terms of the new variables rn and sn defined by

sn = exp(hpn+1) − 1

h
, rn = exp(qn − qn+1 + hpn),

the RTL equation (1) takes the form

ṙn = rn(sn−1 − sn + hrn−1 − hrn+1), ṡn = (1 + hsn)(rn − rn+1). (2)

It is apparent that if h = 0 equation (2) becomes the well-known Toda lattice equation [9, 10].
Consequently, the RTL equation is a deformation of the Toda lattice equation [11].

2. New zero-curvature representations of the hierarchy of the RTL equations

Let f = f (n) be a lattice function. Following [12] we specify the shift operator E and the
inverse E−1 of E as

(Ef )(n) = f (n + 1), (E−1f (n) = fn+1, n ∈ Z,

and below we always write

f (k) = Ekf, k ∈ Z.

Consider the discrete spatial spectral problem

Eφ = Uφ, U =
(

0 1
(hλ − 1)r λ + s

)
, φ =

(
φ1

φ2

)
, (3)

where λ is a spectral parameter and r = r(n), s = s(n) are two potentials.
Following [12], we choose the auxiliary spectral problem

φtm = V [m]φ, V [m] =
m∑

i=0

(
ai bi

(hλ − 1)ci −ai

)
λm−i +

(
bm+1 0

0 0

)
, m � 1, (4)

where ai, bi, ci are uniquely determined by the following initial condition and recursion
relation:

a0 = − 1
2 , b0 = 0, c0 = 0, (5)

ck+1 − rb
(1)
k+1 = 0, k � 0, (6)

b
(1)
k+1 + sb

(1)
k +

(
a

(1)
k + ak

) = 0, (7)(
a

(1)
k+1 − ak+1

)
+ s

(
a

(1)
k − ak

)
+ h

(
rbk+1 − c

(1)
k+1

) − (
rbk − c

(1)
k

) = 0. (8)

In particular, we have

a1 = hr, b1 = 1, c1 = r,

a2 = −h2r(1)r − h2r2 − h2rr(−1) − hrs − hrs(−1) − r,

b2 = −hr − hr(−1) − s(−1), c2 = −rs − hr2 − hrr(1).

(9)

It is not difficult to find that the compatible condition of equations (3) and (4),

(Eφ)tm = Eφtm, m � 1,

is equivalent to the discrete zero-curvature equation

Utm = (EV [m])U − UV [m], m � 1, (10)
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which immediately gives rise to the hierarchy of equations{
rtm = cm+1 − rbm+1,

stm = −c(1)
m + rbm − s(a(1)

m − am),
m � 1. (11)

When m = 1 (set t1 = t), the auxiliary spectral problem (4) is

φt = V [1]φ, V [1] =
(

− 1
2λ − hr(−1) − s(−1) 1

(hλ − 1)r 1
2λ − hr

)
, (12)

and the corresponding equation is nothing but the RTL equation (2). Therefore, (11) is just
the hierarchy of the RTL equations.

3. A Darboux transformation for the RTL equation

Recall that a gauge transformation of a spectral problem is called a Darboux transformation if
it transforms the spectral problem into another spectral problem of the same type.

Starting from the spectral problem (3), we consider the following Darboux transformation,

φ̃ = T φ, (13)

which transforms (3) into the new spectral problem

Eφ̃ = Ũ φ̃, Ũ = T (1)UT −1, (14)

where T = T (n) is determined later by requiring that Ũ has the same form as U, replacing
r, s with r̃ , s̃ respectively.

T can be determined as follows. Assume T is of the form

T =
(

(1 − v)λ + u v

(hλ − 1)w λ + x

)
, (15)

where u, v,w, x are four undetermined functions.
Let φ = (φ1, φ2)

T , ψ = (ψ1, ψ2)
T be two basic solutions of (3) and λ1, λ2 be two

solutions of det T (λ) = 0. Thus when λ = λi (i = 1, 2) two columns of the matrix

T

(
φ1 ψ1

φ2 ψ2

)
=

(
(1 − v)λφ1 + uφ1 + vφ2 (1 − v)λψ1 + uψ1 + vψ2

(hλ − 1)wφ1 + (λ + x)φ2 (hλ − 1)wψ1 + (λ + x)ψ2

)
(16)

are linearly dependent. Therefore, without loss of generality we may assume{
(1 − v)λiφ1(λi) + uφ1(λi) + vφ2(λi)= γi[(1 − v)λiψ1(λi) + uψ1(λi) + vψ2(λi)],

(hλi − 1)wφ1(λi) + (λi + x)φ2(λi)= γi[(hλi − 1)wψ1(λi) + (λi + x)ψ2(λi)],
i = 1, 2,

(17)

where γ1, γ2 are nonzero constants. Obviously (17) is equivalent to{
(1 − v)λi + u + vχi = 0,

(hλi − 1)w + (λi + x)χi = 0,
(18)

where

χi = φ2(λi) − γiψ2(λi)

φ1(λi) − γiψ1(λi)
, i = 1, 2. (19)

Solving (18) we obtain


u = λ1χ2 − λ2χ1

χ1 − χ2 − λ1 + λ2
, v = λ2 − λ1

χ1 − χ2 − λ1 + λ2
,

w = (λ2 − λ1)χ1χ2

χ2(hλ1 − 1) − χ1(hλ2 − 1)
, x = λ1χ1(hλ2 − 1) − λ2χ2(hλ1 − 1)

χ2(hλ1 − 1) − χ1(hλ2 − 1)
.

(20)



7738 R Zhou and Q Jiang

Furthermore, from (3) and (19), we get

χ
(1)
i = φ

(1)
2 (λi) − γiψ

(1)
2 (λi)

φ
(1)
1 (λi) − γiψ

(1)
1 (λi)

= (hλi − 1)r + (λi + s)χi

χi

, i = 1, 2,

which can be written as

χ
(1)
i = µi

νi

, i = 1, 2, (21)

where

µi = (hλi − 1)r + (λi + s)χi, νi = χi, i = 1, 2. (22)

Through a direct calculation we obtain


u(1) = λ1µ2ν1 − λ2µ1ν2

µ1ν2 − µ2ν1 − (λ1 − λ2)ν1ν2
, v(1) = (λ2 − λ1)ν1ν2

µ1ν2 − µ2ν1 − (λ1 − λ2)ν1ν2
,

w(1) = (λ2 − λ1)µ1µ2

µ2ν1(hλ1 − 1) − µ1ν2(hλ2 − 1)
, x(1) = λ1µ1ν2(hλ2 − 1) − λ2µ2ν1(hλ1 − 1)

µ2ν1(hλ1 − 1) − µ1ν2(hλ2 − 1)
,

(23)

and

w = v(1)r, u(1) + sv(1) = x. (24)

For T defined by (15) and (20), we have the following proposition.

Proposition 1. The matrix Ũ defined by Ũ = T (1)UT −1 has the same form as U, in which
the old potentials r and s are mapped into r̃ and s̃ according to

r̃ = r − w

1 − v
, s̃ = hw(1) + x(1) + s − x − r − w

1 − v
hv. (25)

Proof. Let us write

T (1)UT ∗ =
(

f11(λ, n) f12(λ, n)

f21(λ, n) f22(λ, n)

)
,

where T ∗ is the adjoint matrix of T and satisfies T −1 = T ∗/ det T .
Through a direct calculation we find that

fkl(λi, n) = 0, k, l, i = 1, 2. (26)

On the other hand, from (20) we know that

det T = ((1 − v)λ + u)(λ + x) − (hλ − 1)vw = (1 − v)(λ − λ1)(λ − λ2). (27)

Therefore, we have

T (1)UT ∗ = (det T )Q, (28)

with

Q =
(

Q11 Q12

Q21λ + Q1 Q22λ + Q2

)
where Q1,Q2 and Qij (i, j = 1, 2) are undetermined functions.

Equation (28) can be written as

T (1)U = QT. (29)

Substituting

T (1) =
(

(1 − v(1))λ + u(1) v(1)

(hλ − 1)w(1) λ + x(1)

)
(30)
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into (29) we arrive at

v(1)(hλ − 1)r = Q11[(1 − vλ) + u] + Q12(hλ − 1)w, (31)

(1 − v(1))λ + u(1) + (λ + s)v(1) = Q11v + Q12(λ + x), (32)

(λ + x(1))(hλ − 1)r = (Q21λ + Q1)[(1 − v)λ + u] + (Q22λ + Q2)(hλ − 1)w, (33)

(hλ − 1)w(1) + (λ + x(1))(λ + s) = (Q21λ + Q1)v + (Q22λ + Q2)(λ + x). (34)

Comparing the coefficients of λj (j = 0, 1, 2) gives rise to

Q11 = 0, Q12 = 1, Q22 = 1, Q21 = h
r − w

1 − v
,

Q2 = hw(1) + x(1) + s − x − h
r − w

1 − v
v = s̃, Q1 = w − r

1 − v
.

Therefore

Q21λ + Q1 = (hλ − 1)
r − w

1 − v
= (hλ − 1)r̃.

Hence we obtain

Q =
(

0 1
(hλ − 1)r̃ λ + s̃

)
= Ũ .

The proof is completed. �

Now let us consider the action of (13) to the spectral problem (12). Under the
transformation (13), the spectral problem (11) is transformed to the following new spectral
problem:

φ̃t = Ṽ [1]φ̃, Ṽ [1] = (Tt + T V [1])T −1. (35)

We claim that if φ = (φ1, φ2)
T , ψ = (ψ1, ψ2)

T are two basic solutions of both (3) and (12),
then Ṽ [1] has the same form as V [1]; that is, the following proposition holds true.

Proposition 2. Under transformation (13), the corresponding matrix Ṽ [1] is of the form

Ṽ [1] =
(

− 1
2λ − hr̃(−1) − s̃(−1) 1

(hλ − 1)r̃ 1
2λ − hr̃

)
,

where r̃ and s̃ are defined by (25).

Proof. If we write

(Tt + T V [1])T ∗ =
(

g11(λ, n) g12(λ, n)

g21(λ, n) g22(λ, n)

)
,

then through a straightforward and tedious calculation using the identity

χi,t =
(

φ2 − γiψ2

φ1 − γiψ1

)
t

= (hλi − 1)r + (λi − hr + hr(−1) + s(−1))χi − χ2
i , (36)

we know that g11(λ, n), g12(λ, n), g21(λ, n), g22(λ, n) are cubic polynomials of λ and

gkl(λi, n) = 0, k, l, i = 1, 2.

Therefore we may assume that

(Tt + T V [1])T ∗ = (det T )R, R =
(

R11λ + R1 R12

R21λ + R2 R22λ + R3

)
, (37)

where R1, R2, R3 and Rij (i, j = 1, 2) are undetermined functions.
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Equating the coefficients of λj (j = 0, 1, 2) on both sides of the equation

Tt + T V [1] = RT,

we get

R11 = −1

2
, R12 = 1, R22 = 1

2
, R21 = h

r − w

1 − v
= hr̃,

R3 = −h
r − w

1 − v
= −hr̃, R2 = − r − w

1 − v
= −r̃ ,

R1 = u − hr(−1) + hr(−1)v − s(−1) + s(−1)v − hw − x

= −hr̃(−1) − s̃(−1).

Hence

R =
(

− 1
2λ − hr̃(−1) − s̃(−1) 1

(hλ − 1)r̃ 1
2λ − hr̃

)
= Ṽ [1].

The proof is completed. �

Combining propositions 1 and 2, we know that transformation (25) transforms U,V [1] to
Ũ , Ṽ [1] with the same form, respectively. The following theorem holds.

Theorem 1. Let

r̃ = r − w

1 − v
, s̃ = hw(1) + x(1) + s − x − r − w

1 − v
hv. (38)

If r, s solve (2), then so do r̃ , s̃ and transformation (φ; r, s) → (φ̃; r̃ , s̃) is a Darboux
transformation of (2).

4. An exact solution of the RTL equation

Now let us apply the Darboux transformation to construct an exact solution of the RTL
equation. Choose a seed solution r = 1, s = 0 of the RTL equation (2). Then the spectral
problems (3) and (12) read

φ(1) =
(

0 1
hλ − 1 λ

)
φ, φt =

(
− 1

2λ − h 1

hλ − 1 1
2λ − h

)
φ, (39)

which have two real basic solutions

φ = e(−h+ζ )t

( (
1
2λ + ζ

)n

(
1
2λ + ζ

)n+1

)
, ψ = e−(h+ζ )t

( (
1
2λ − ζ

)n

(
1
2λ − ζ

)n+1

)
,

where

ζ =
√

hλ − 1 + 1
4λ2.

Thus we get 


χ1 =
(

1
2λ1 + ζ1

)n+1
e2ζ1t − γ1

(
1
2λ1 − ζ1

)n+1(
1
2λ1 + ζ1

)n
e2ζ1t − γ1

(
1
2λ1 − ζ1

)n ,

χ2 =
(

1
2λ2 + ζ2

)n+1
e2ζ2t − γ2

(
1
2λ2 − ζ2

)n+1(
1
2λ2 + ζ2

)n
e2ζ2t − γ2

(
1
2λ2 − ζ2

)n ,

(40)
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where λ1, λ2 are arbitrary nonzero constants and

ζi =
√

hλi − 1 + 1
4λ2

i , i = 1, 2.

Finally, we obtain a solution of the RTL equation (2)

r̃ = 1 +
λ2 − λ1

χ1 − χ2
− 1

ρ2
χ1χ2(χ1 − χ2 + λ2 − λ1)(λ2 − λ1),

s̃ = λ1 − λ2

χ1 − χ2
+

δ1

δ2
− ρ1

ρ2
,

where

δ1 = λ2(hλ2 − 1 + λ2χ2)(h
2λ1 − h − χ1) − λ1(hλ1 − 1 + λ1χ1)(h

2λ2 − h − χ2),

δ2 = (χ1 − χ2)(hλ1 − 1)(hλ2 − 1) + χ1χ2(λ1 − λ2),

ρ1 = h(λ1χ2 − λ2χ1)(λ2χ2 − λ1χ1),

ρ2 = h(λ1χ2 − λ2χ1)(χ1 − χ2) + (χ1 − χ2)
2.

5. Concluding remarks

In this paper, we have established a Darboux transformation for the RTL equation and
obtained an explicit solution of the RTL equation. It is a pity that we have not known the
interest in physics of the solution.

It is worth mentioning that starting from the spectral problem

Eφ = Ũφ, Ũ =
(

0 1
(αλ + β)r λ + s

)
, φ =

(
φ1

φ2

)
, (41)

Ma and Xu [12] have derived the hierarchy of the combined TL–RTL equations. In an exactly
analogous way, we can construct the Darboux transformation and explicit solutions of the
hierarchy of the combined TL–RTL equations. We will report this result elsewhere.
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